" WYLE LABORATORIES - RESEARCH STAFF
Report WR 66-17

Errata

RESPONSE OF PANELS TO OSCILLATING
SHOCK WAVES

by
M. J. Crocker

Submitted under Brown Engineering Co.
Work Order No. 933-50-19-9132 - Technical Directive W-25 - NASA Contract
No. NAS8-20073-1

Replace Figure 1, page 47, with new page attached.
In Figure 5, page 51, alter caption of the ordinate from "Dynamic Magnification

Factor for First Mode" to "First Mode Dynamic Displacement/Displacement Due to
Same Uniformly Distributed Static Load™.




WYLE LABORATORIES - RESEARCH STAFF
Report WR 66-17

RESPONSE OF PANELS TO OSCILLATING
SHOCK WAVES

By
M. J. Crocker

Submitted under

Brown Engineering Co. Work Order No. 933-50-19-9132
Technical Directive W-25

NASA Contract No. NAS8-20073-1

g

March, 1966

COPY NO.




WYLE LABORATORIES - RESEARCH STAFF
Report WR 66-17

RESPONSE OF PANELS TO OSCILLATING
SHOCK WAVES

By
M. J. Crocker

Submitted under

Brown Engineering Co. Work Order No. 933-50-19-9132
Technical Directive W-25

NASA Contract No. NAS2-20073-1

Prepared by % - ﬂraméef Approved b)ﬁﬁ&
M. J.&rocker . C. Sutherland

Approved by

Director of Research

Date March, 1966




SUMMARY

Experimental dota of oscillating shock waves experienced by space vehicles are
examined to determine whether shocks oscillate in a random or discrete manner.
Since there is evidence to suggest that shocks can oscillate at discrete frequencies,
this was chosen as the principal theoretical model. Theory is formulated for the
response of a simply-supported panel to sinusoidally oscillating shocks ond to shocks
moving at constant speed. Some analysis of the theory is made and it is found that
first mode dynamic amplification factors as high as fifty could be experienced by

a panel for a shock oscillating about the panel center, over the full span and ot
the panel resonant frequency, for typical panel damping.
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1.0

INTRODUCTION

As a typical space vehicle accelerates through the atmosphere it is subjected to fluctu-
ating pressure loads on the vehicle skin due to a variety of aerodynomic mechanisms.
These pressure loadings can be so severe that they have caused the loss of some vehicles
(Reference 1). Thus, it is imperative that the loading which a prototype vehicle will
experience and the effects upon the structure must be estimated before its first flight.
Figure 1 (extracted from Reference 2) shows the relative importance of the fluctuating
pressure loadings experienced by a typical launch vehicle. It is seen that, except during
the initial 10 or 20 seconds of flight when structural loading caused by the noise from the
rocket exhaust mixing with the atmosphere predominates, the dominant loading is caused
by pressure fluctuations due to the turbulent boundary layer and separated and woke flows
which are often coupled with oscillating shock waves.

Although these latter aerodynamic phenomena are coupled together, calculating the
response of the missile structure to such a combined loading would be very difficult.
The normal procedure is to assume that each loading is uncoupled. The structural
response to each source of excitation is then calculated and the total response found

by a summation of responses. This affords a considerable simplification in the math-
ematics. In this report, only the response of structure to traveling shocks is considered.

Experimental evidence shows that during supersonic flight of a missile, separated flow
and shock waves occur at the interstage farings where the stream lines encounter local
compression. During the subsonic flight regime the separated flow and shock waves
form at the shoulders of the vehicle where local compression is encountered by the flow.
As the vehicle accelerates, these shock waves tend to oscillate and simultaneously run
down the vehicle from one flare or shoulder to the next. Thus, the response of vehicle
structure, to both running and oscillating shock waves, is of interest.

In Section 2 of this report, available experimental evidence is examined to decide the
manner in which shock waves oscillate. In Section 3.1, theory for the response of a
panel to a time varying force is formulated. Section 3.2 deals with panel response to
grazing incidence moving shocks and in Section 3.3, theory is formulated for panel re-
sponse to a grazing incidence shock moving with constant velocity. In Section 3.4, the
theory is extended to cover the case of panel response to grazing incidence sinusoidally
oscillating shocks, where the amplitude of shock oscillation is restricted. Section 4.0 of
this report deals with computations made of the analysis of Section 3.4

Equation (1) below gives the ratio of static pressures across a shock front in terms of the
Mach number of the approaching flow, M] .

Py [ZYMf -y - 1)]

Py y+1 (1




- M

where y is the ratio of specific heats of air.

The notation used is shown in the sketch below, which shows an idealized normal attached
shock wave.
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Vehicle Structure

If the shock wave oscillates relative to the vehicle structure, the pressure Py does not

remain constant, but increases as the shock front moves upstream and decreases as it moves
downstream. The static pressure P, can only be assumed to remain constant provided the

shock front velocity remains small compared with the velocity U of the approaching flow.

In Appendix A, a method which can be used to allow for this change in pressure and
velocity, if necessary, is formulated. It is not necessary, in this case, to introduce the
approximations made in Section 3.4 and thus, there is no restriction on the amplitude of
oscillation. The theory formulated allows both sinusoidally oscillating shocks and shocks
oscillating at constant speed to be considered.

Appendix B shows how the theory developed in Section 3.4 can be formulated without the
restriction on amplitude of the oscillating shock. Appendix C shows how the analyses,
which have hitherto been restricted to simply -supported panels throughout the report,
can be developed for the case of clamped-clamped panels. Appendix D gives the logic
for the computer program used for computation of the analysis of Section 3.4.



2.0

2.1

DISCUSSION ON BEHAVIOR OF OSCILLATING SHOCKS

Examination of Experimental Data on Shock Oscillation

It is a well known fact that the shock waves which form around aircraft and space vehicles
during transonic and supersonic flight in the atmosphere are not stationary but oscillatory
in nature. As a flight vehicle accelerates through the transonic regime of its flight, the
shocks run backwards down the vehicle skin and oscillate simultaneously in some manner.
With high speed aircraft the annoying phenomenon known as “aileron buzz" has been ex-
perienced for many years; in the case of space vehicles, the unsteady loading caused by
the running and oscillating shocks is more serious.

The shocks which occur on a typical space vehicle form about the shoulders and flares of

the vehicle. These shocks are aerodynamically coupled with the turbulent boundary layer
and separated flows at these points. Calculating the vehicle skin response to such a coupled
unsteady pressure field would be a very complicated task. However, if it is assumed that
the pressure field due to these coupled phenomena can be separated, then the vehicle skin
response can be determined for each forcing function, and the actual skin response found

by summing the responses. This approach affords a great simplification in the mathematics
and is adopted in this report.

Although it is well known that the shocks are oscillating in nature, evidence as to the
nature and type of oscillations is sparse and the measurements that have been taken, often
suggest conflicting physical models. This is probably due to the complex coupled nature of
the flows and the probability that different data have been gathered from entirely different
flow regimes.

In Reference 3, an attempt wos made to set up an oscillating shock in o wind tunnel (at
M=22) with the use of an oscillating aerofoil. The acoustic measurements indicated that
the turbulent boundary layer pressure frequency spectrum was increased over a broad band
with no evidence of discrete frequencies present; however, these could have been masked
since there was much tunnel noise present. In Reference 2, Krause indicated that oscillating
shocks may  have been responsible for discrete frequencies found at about 200 and 220
cps during the Saturn SA-4 flight. In Reference 4, experimental work by Kistler revealed
the existence of discrete frequency oscillations of a shock wave associated with a separated
flow region at supersonic Mach numbers. However, repetition of this same work by Coe ,
at Ames A _F.B., did not reveal the same discrete frequencies but suggested that the shock
wave simply magnified the pressure fluctuations of the turbulent boundary layer. In Refer-
ence 5, during recent sled tests at Holloman A.F.B., the existence of discrete frequencies
of about 215 and 430 cps has been observed on a flat plate at transonic Mach numbers
(M=0.84).

In References 6 and 7, Lowson suggests that the shock wave is very quick to couple with
any forcing frequency present in the local environment. Such a forcing function could
result from resonances of the panel or from discrete frequencies present in the turbulent
boundary layer pressure frequency spectrum .Lowson also makes the interesting suggestion

3



2.2

{which has also been made previously by other authors) that the peak pressure fluctuations
beneath the shock are due to shock-turbulence interactions.

As there is much evidence that o shock can oscillate at a discrete frequency, this case will
be considered in the following sections of the report, particularly since the structural
response problem is probably more easily analyzed and set up for digital computation than
for the randomly oscillating shock case.

Definition of a Theoretical Model for Shock Oscillation

="

‘_-ZH____r—Shock Front
x=0 X=a
e

The oscillating shocks which are .examined later in this report,can be considered to oscillate
cbout @ mean position x = D on the panel, in o direction parallel to two sides of the panel.
If the amplitude of vibration is H, then the position of the shock front at any time t may

be given by:

X=D + Hsina t 2

if a is the angular frequency of vibration.



3.0

3.1

RESPONSE TO OSCILLATING SHOCKS

Panel Response to a Time Dependent Force

If the case of small viscous damping for a panel is assumed, cross coupling of the modes due
to damping may be ignored and the well known Lagrange equation of motion (Equation 3)
may be written:

ME ®+CEM+KE (M =L @)

where: & r(f) is the generalized displacement coordinate at time t

Mr is the generalized mass = ph//; (x,y) dx dy
r
Xy
Cr is the generalized damping coefficient = 2 Mr w 8r
Kr is the generalized stiffness :Mr wr2

Lr (t) is the generalized force ot time t =-/:/;:(x,y,t)fr(x,y) dx dy
Xy

fr(x,y) is the mode shape

h is the panel thickness

p(x,y,t) is the spatial pressure time history

Gr is the critical domping ratio

P is the density of the panel material

© is the angular resonant undomped frequency

Subscript r refers to the rth mode

Equations (3) describe the effective motion of a set of independent single degree of freedom
systems.

The total displacement at any point (x,y) on the panel and at any time t is given by:

Gx,y,t) = z°°: [& r(f)fr(xl)')]
r=1 )



The displacement G(x,y,1) is the sum of the products of the generalized displacement co-
ordinate and the mode shape of each mode. Normally it is found that only the first few
modes provide significant contributions to the panel displacement and that the contributions

of the higher modes are negligible.
The strains in the x- and y~ directions, ex(x,y,f) and ey(x,y,t), respectively are given
by equations {5) and (6), by considering simple bending theory (Reference 8):

2

h 9 [
e (XIYIt) = - -2' '-_2' G(X,Y,f)]
X ox Ut (5)
2
h [
e (XIYIt)= 'E "a—f G(xlylt)]
y ay° L ©)

It is found that more modes must be considered in the case of the strain time history, than
in the case of the displacement time history in order to obtain the same accuracy in the

response time history.

- tual, Lo
1 1

2 I8 : AN . b 20 o e n H
The siresses o ix,y,ij and g {x,y,f) in the x- and y- direciions,iespeciively, for o point
x M

x,y on the panel at time t are given by:

E r
o (x,y,t)=—=—]e K,y,)+ve (x,y,f)]
x (1-»%) 1 Y %
o (x,y,1) =—-E—2-.e (x,y,t) +ve (x,y,fi ®)
4 (1-v9% 7 s
where E is Young's Modulus of Elasticity .
v is Poisson's Ratio i
Ha
If Lr(f) = 0 in Equation (3), the solution is given (see Reference 9) by: . F -
X ” v

\\\_/ _ i\}\ f(

Crt "
Y : megt] T sl
£ M)=e "1&  cosw t+ (& + £ 3 d S
r 0 d 0 2M 0r wy e
r . 2
2 . //‘
. . . oy 4y \/ oA )
provided the damping is subcritical (Kr>Cr/ 4Mr) .7 LA/ «t
where EO is the initial displacement in the r'rh mode
r

; ' th
and g0 is the initial velocity in the r mode
r 6



Nf
0 i —»
> — v o
0 do t

If the panel is subjected to an elemental impulse at time o of L(0) do, as shown in the
above figure, then the generalized displacement in the rt? mode, due to the generalized

rH1 modal impulse L‘_(a) do is:

_Cr(f-d) L (0) sinw, (t-0)
M r dr
dé ) = e r do
r Mo
rd
' (10)
) L (o) do
This equation was obtained by substituting the incremental velocity d & 0" L "

r

into Equation (9) and putting £ 0 = 0. Thus the generalized coordinate at time t due to
r

the continuous application of the force L(o) is " }tﬁ/ j\r*’v
C RV
r
: t 2 M. (t-o)
«Er(f) = W L, e sin wdr(f-a) do _ 1)

r

Equation (11) is often termed the Duhamel or convolution integral .

In order to determine the complete solution of Equation (3), it is necessary to add Equations
(9) and (11) together. Thus the generalized dispJacemenf coordinate:

Crf .
- — C sin ud t
. 2M : r r
£r(t)—e §0 cosudf +<§0 + M 50 = +
r r r r dr
C
t r
: ~ o )
Ve Lr(c) e sinw (t-0) do
r dl‘ 0 - r (]2)

7




3.2

The first term in this equation represents the effect of initial displacement and velocity,
while the last term represents the effect of the disturbing force.

If the initial displacement and velocity are assumed zero, then Equation (12) may be

rewritten:
Cl'
: “o o)
Er(f) = W/ f[ plx ,y, o) f(x) f(y) dx dy e sin(ud (t- a))do

"% 9=0 % Yy r (13)

during excitation, and
Cl’
“zm 9)

1
Er(*) ) Mrwd /

/ f px,y,0) f(x) f(y) dx dy e ' sin(md ('r-a))dcr
ro=0 x Yy r (14)

where excitation ceases at time r.

Simply ~ Supported Panel Respc::se to Grazing Incidence Moving Shocks

_-mm
x=0 X=a
le—s
L(o)

Consider a rectangular panel mounted in an infinite baffle and subjected to a plane step
shock of overpressure Po moving parallel to a pair of edges, as shown in the above sketch.

If the shock front has reached a position L(o) at time o then the generalized displace- A
ment coordinate at time t for the mn™ mode is:

: t. L) b ) %&_O)
M w f / Py f(x) f(y) dx dy e 2 sin(w d(‘l’—q))do'
i (15)

0=0 x=0 “y=0

Emn(t) -



3.3

3.3.1

For a simply - supported panel:

f(x) = sinX
f(y) = S;n n 'ﬂ'y

where
a = panel length in x - direction
b = panel width in y ~ direction
m = mode number (x - direction)
n = mode number (y - direction)

The case of a clamped-clomped panel is discussed in Appendix C.

Thus evaluating Equation (15) for a simply - supported panel gives:

t C
2abp - (t-o)
= 0 f (i - cosmm i(cr)] e 2 sin(’ud(t-a))dc

¢ ) = —m—a——
mn 2
mnt Mo _/
d ‘o=0
(if n is an odd integer)

Emn(f) =0 (if n is an even integer) (16)

Simply - Supported Panel Response to a Grazing Incidence Shock Moving with a
Constant Velocity .

Introduction

Before considering the case of a panel subjected to an oscillating shock loading it is in=
structive to consider the case of a panel which is subjected to a shock which moves across
it at constant velocity. This case is not simply one of academic interest, but is of prac-
tical interest also. As a space vehicle accelerates through the transonic regime, the
shocks which form at the cone-cylinder intersection and at the flares and steps on the
vehicle profile tend to run down the structure from one shoulder to the next. The velocity
at which these shocks run down the structure is uncertain; Reference 10 suggests approxi-
mately 8 in./sec.. However, with a study of the shock patterns formed at different
Mach numbers (Reference 11), and a typical Mach number-time curve (Reference 2), o
value of 5 ft./sec. would seem more probable. Since these running shocks pass over the
vehicle skin, which is not specifically designed to resist oscillating shocks, a running
shock could provide a severe loading case for some parts of the vehicle.



3.3.2 Theoretical Analysis

Assume the panel is flat (this is not a severe approximation for panels of large boosters where
curvature effects, which raise the natural frequency, are small). Also assume the panel is
unstiffened and simply - supported. The case is considered where the panel is initially un-
loaded and a low pressure region is assumed to move across the panel with a constant velocity
in the x - direction as shown in the sketch below.

x|«
' c
2l
(V2313
v
m—
Py Py
x=-'0 XxX=4aQ
P2

Let Py =Py =Pg then the pressure at any point x,y on the panel and at time o may be
assumed to be:

pk,y,e) =0 a> x> veo

pix,y, o) = Po voe> x>0

Thus, the panel response is divided into two time regimes (A) and (B). In the analysis

which follows, the following symbols v, , ,M ,8 ,andC are abbreviated
d 0 mn’ mn mn
mn mn 2 )
tow,w,, M, 8§, and C respectively. Note that u2 = u2 +(—C—) = u2 + (W 8)2
+Opr M B pectively . 0 2M 0

(A) For time 0 < t < a/v: The generalized displacement coordinate of the mnfh mode is

givenby £, ()= & (1)
A?nn ]mn
where:
| 1 i mmux nw ""os(f' 7)
gl ) = e Po sin sin—bZ dx dy e sin w (- o)do (17)
mn a
o=0 “x=0 =0

The similarity to Equation (15) is immediately noticed as £ (o) has simply been replaced
by vo . Thus, using Equation (16), Equation (17) may be shown to be (after integration
and rearrangement):

10




vt + (U_mnv) cos muvt

2c|bp0 stmm

3 t) = +
]mn mmrzMu T
[(u - =) ]
u08 sin MIVE _ += )cos muvi
+ +
2| g + s ™ ]
'”08* w & sin wt + (u-ﬂv)coswf
w 0 o]
+ —t e .
02 2 mmv 2
0 2[(&08) + (U—T) ]
isinuf+(u+ﬂ)-cosuf WS sinwt + wcos wt
+ 0 Q _ “o
2
2[@,& + o+ I ] “,
70 a j g/

(where n is an odd integer)

3 1 (t) = 0, (where m is an even integer).
mn

(18)

h
(B) For time a/v < t< a: The generalized displacement coordinate of the mnf mode is

given by: £ "= {] ) + & 2 (t), where the residual response due to the passage

mn mn mn
of the shock front across the panel is given by:
a voe b
_ v/ -w. 5(t-0)
3 . M = fv]\w / / [ Py sm-maﬁ( sm—b dx dy e 0 sin w(t-o ) do
mn _

which gives on evaluation and much rearrangement:

11



2 ab Py - uOS'r wosg uOS sin (%9-— ~wt-mm) -(0 - m:v) cos (2 —~wt-m)
E. ) s—s——e . . Y +
1 2 2
mn mnT Mo 2 mmv
2[(u08) @ -—) ]
a
X wOS sin (3\—:"- -ut+mr) - @ +-T£—v) cos (—ug- - wt + mmn) _QOS sin @ (-3— - t)wcos u(%—f) .
2 (w8)2+(u+m)2 u2
0 a 0
0 B el oo 4 .‘ IU"‘EP-LY\ cos wh CJS . +I.A+11!_V\ R . r
. Boo sinw i + { o/ $ W . 0 sin wt + W . ) cos wi wOS sin wt +w cos wt I
2 {(u 5)2 + ( _"‘“V)Z] 2 [(w 82 + (w +-’1‘ﬂ)2] w2 ‘
0 a 0 o 0
(where n is an odd integer), |
-5—1 (t) = 0, (where n is an even integer). (20)

mn

The generaiized dispiacement coordinate of the forced response during the second time
regime is given by:

t a b
1 mmx nm ""08(*"’)
52 (t) = o Py sin-—o- sin by .dx dy e sin w(t -o) do
mn w=a/v X=0 'y=0 (21)

which gives on integration and rearrangement:

4abp 0 8(= - t) :
£ ) = 0 w-e 0 M wSsinw (E-t) ~wcosw (=-1)
2 2 2 0 v v
mn mant M wwo
(where both m and n are odd integers),
3 2 (t) =0 , (where either m or n are even integers) . : (22)
mn

The above integrations were evaluated using commonly tabulated integrals (Reference 12),
ond the integrals specially evaluated in Reference 13.

12




3.3.3 Small Damping Case

If damping is negligible then putting & - 0 in Equations (18), (20), and (22), respectively,
gives:

mmv§
) 2 abpo 1 - cos wot  cos——— - cos uof
&, M= -
i 2 2 2
mn mnt M “q 02 _ (mm/)
0 o
(if n is an odd integer). (23)
Zc"‘bF’O cosu(g--f)-cosmf cos(w-g-u t +mmw) - cos w.t
T 0'v 0 Cv 0 0
mn mnT M Yy wg - ('_'_“_aﬂ)
(if n is an odd integer). (24)
4 cbpo a
§ () = =——=—==-1 1 -cosuw, (— -t} (if both m and n are odd integers). (25)
2 . ..ZM.\Z 0'v
mn o T nwo L 3
again £ 1 M= i—] () =0, if nis an even integer and 52 =0, ifmornare

mn mn mn
even integers .

For the case of a shock arriving in a direction normal to the panel surface, v = o,

and thus, time regime (A) disappears; § I (t) and E] (t) must be neglected and
mn mn

the generalized displacement coordinate becomes:

For time 0< t < o

4 abpo
«Emn(f) = 1 -cos Wt

mnw Muo (26)

3.3.4. Total Displacement, Strains and Stresses

The total displacement, strains and stresses in the x - and y - directions,respectively, of
any point on the panel, may be determined by substituting the appropriate value of
§A (t) or & B (t) and the values of x and y into Equations (4), (5), and (6) and

mn mn

then (7) and (8).

13



3.3.5 Displacement of Panel for Large Time

It is interesting fo note that the deflection of a uniform simply - supported panel, sub-
jected to a uniform pressure Po (see Reference 8, p. 110), may be written (when the

symbols are rationalized):

16p 2, &© Q0 sin sin—
G,y 1) = 60 ]2(1 ) Z Z b
n E h m n
m=1 n=1 ""2‘ .
(27)
(where m and n are odd integers).
but for a simply - supported panel:
w _ Trzh [m2 + nZJ E
Ornn o b2 JY 1260-42) 28)
and:
an =phab/4 | (29)
Thus, Equation (27) may be rewritten:
o nwy
4 p0 ab sin sin <
G( foIt)
1 mn m u
= Onn (30)

Some time after the panel is subjected to a step shock wave, if it is viscously damped,
the panel vibrations will decay and the displacement of the panel should be equal to
that of a panel subjected to a uniform pressure Po- Thus, if t = co in time regime (B)

above in Section 3.3.2, the displacement should be equivalent to that given by
Equation (30). Puttingt == o, it is seen that & . -0

mn
4 abpo

[from Equation (20)] and §2 (t) = —5 5
mn mnw Muo

(where both m and n are odd integers).

Thus, the total displacement is given by Equation (4):

14



3.4

o 4ab Po

Gx,y,t) = E E — Muz sin m:x sin ml:y
m=1

0

31)
It is seen that Equations (30) and (31) are identical and that the panel equilibrium dis-
plocement after a long time is that due to the uniform pressure Py-
Simply - Supported Viscously Damped Panel Response to Grazing Incidence
Sinusoidally Oscillating Shocks
Assume the position of the shock front at time o is given by Equation (2):
x=D+Hsinaco 2
Putting £(¢) = D + H sinae in Equation (16), thus gives the generalized displacement
coordinate of the mnth mode for panel response to the sinusoidally oscillating shock:
2abp -w 5(t-0)
E = O / [] - cos m1rD mH sin av) ] e 0 sin w(t-o)do
mn L Mw
mn o=0 (32)

However, Equation (32) includes the effect of a suddenly applied pressure over the
panel from x = 0 to x = D, the generalized displacement coordinate of which is given by:

t
2abp - . 5(1-0)
E o) = —2] (1-cos™ye O Ginwlt-o) do
static “_2 a _

Thus, the panel vibrations due only to the shock oscillations are given by Equation (32)
less Equation (33):

t
-0
20b Po mwD muD mwH . -"’06.(t )
3 (t) = ——a—— cos - cos{— + sin aglle sinw(t-o)do
osc 2 a a
mn mn® Ma

0 34)
This method used is similar to that used by Ungar in Reference 14, with the exception

that viscous damping is included from the beginning of the analysis, while in Reference

14 damping is not included and suggestions are simply made for its inclusion when the
analysis is completed.

15



Expanding the second term, Equation (34) becomes:

2abp
£ (t) = 0 / [ mwD cos m‘;D)cos(mT;H sin ao) +

osc
mn mnw Mw

sin w (t-0) do

. muDYy. ,mwH . -uOS(t-a)
+ f{sin ~ sin ( — -sinag)

Integrating the first term in the cbove equation is straightforwardy however, obtaining
a closed form solution for the integrals of the second and third terms does not appear
possible. In this section of the report, an approximation is made for the second and
third terms which is only valid if mwH/a is small. A much better approximation (using
Bessel functions) which does not restrict the maximum value of mwH/a is given in
Appendix B.

Putting mmH/a = pand ao = z and using only the first term in the series expansion for
sine, which is thus valid only when uis small gives:

sin (psin z) x psinz x sinpsinz

Using only the first two terms in the series expansion for cosine, which again is only
valid for small p gives:

cos (psinz) = 1 --;— (U sin z)zz ]—25in2%sinzz
~ 1 -%(] -cosp) (1 -cos2z)
cos (p sinz)zf(l + cos p)+——(1 -~ cosp) .cos2z

Figure 2 (extracted from Reference 14) shows the accuracy of these approximations for
two different values of u. As expected, the approximations are better for small values
of u, and p = n/2 would seem to be the largest reasonably acceptable value which
should be used.

Substituting these approximations into Equation (35) gives:

2

osc
mn mnw Mu

-w 08 (t~o)

D . H . .
il DT sinac | e sin w(t-o) do

sin

+ sin

(provided n is an odd integer and mmH is small).

35)

(36)

(37)

2a0b p
£ (t) =~ 0 [[ = (cos—- (1 - cos m;rD) --]—(cos mnD) (1 —cos—-—-)cos 2a0 +

(38)



Ecuation (38) containe three terms which are integrated separately:

t
2 ab p 1, miD muH, 9000
I, = = ——=——] 5 (cos ) (1 - cos ) e sin w (o-t) do
1 2Mw 2 a a
mnw 0 . (39)
which gives an evaluation:
ab p - w bt
I. = 0 (cosm“D) (l-cosm“H) w-e 0 {—m S sin wt + w cos wt
1 2 2 a a 1o
mnw AAAJ&!O
, (40)
_ ob Po mwD mmwH wOS(.O_f)
[, =———7———] (cos Y1 - cos ) e “sinw (0-t) cos 2ac do
2 1r2Mw a a
which gives on evaluation:
ab p
[ = 5 (cos m1cr:D) (1 -cosmzH)o
mn 7™ Mo
- w 5t
uOS sin2at+ (W-2a)cos 2at-e . [008 sin wt + (W=2a ).cos w f]
ol- ' +
2] ,8)° + (- 20)°]
-w, ot
uOS sin 2at - (W + 2a ).cos 2at t+e [uOS sin wt + (w + 2a ).cos uf]
+ 1
2 2
2[08)% + 0 +2a)* | )
and,
t
2abp w.5(o-t)
I =- 0 (sin maD ¥sin m1rH) e 0 sin w(o ~t) sin ao do (43)
3 2 a a
mn® Muw

0

which gives on evaluation:



I

§

-w
_2c|bp0 . m1rH (u-c)sinat-w08cosat—e [(u-a)sinwt-uoﬁcosuf]
(sm )(sm ) 5 5 +
mn T Mo 2[((.)05) +Ww-a) ]
—u8t
(u+a)sinaf+w08cosct+e [(w+a)smwf—w08cosut]
+
2 2
2 [ + @ra) | ”
Thus:
ab p f 2
() ='———'2—9—7 (Cos-rp-“—)(l-cosm—ﬂ') ( ) [l'—’SSEnuf+(u—-)-cosuf] -
%% Cmn mnt Mo “o “0 |
081’
W w0851n20f+(w-2c)c0520t-e [QOSSInm+(w-20)cosut] i
2 @,8)° + @ - 2a)
-(.)81’ . .
wOSSin2uf+(u+2cx)c052uf+e [u 85mwf+(u+2a)cosm]]
((.,05)2 +(0+2a)
- 5t
w-a)sinat-wbcosat-e W-a)sin wt-wbcosw
+(sin )(sm me) 0 3 [ 3 0 f] +
("’08) + W=-a)
-w, 5t
(w+c)sinaf+005cosuf+e [(u+c)sinwf-u08coswt]
+
2 2
("’05) + @+a) (45)

If damping is small, § - 0 and Equation (45) reduces to:

ab p cos 2a t - cos w .t
t = ______O (cos ——m“ ) (1-cos m"H) 1 -cosw.t- u2 0 +
osc 2 a 0 0 2 2
mn mnw M.oo uo-(20)

w.sinat -a.sin mof]
(46)

+ 2(.)0 (sin rT";D)(sin m1;H )[ 0 u2 - az

0

18



which agrees with the result obtaired by Ungar in Reference 14, except that the term

. 2 2 ) . .
inthisanalysis, with ™ - (2a )" as the denominator, is half the value of the equivalent
term in the analysis of Reference 14, which is believed to be in error.

For large time, t = o, Equation (45) reduces to:

ab Po D T 2 o uOS sin2at+ (w-2a).cos2at
1) === ) lcos =)-(0 - cos a)(u—) "3 7 7"
mn mnw M 0 (wOS) + W -2a)
uOS sin 2at - (W + 2a )-cos 2a t  maD... mwH W-a)sinat - wOS cos a t
- 5 5 + w(sin Xsin ) 5 5 +
@8 + @+ 2a) . ° @8+ @ -a)

(w+u)smct+w §cosat
+
@, 5) + (w+a)

(47)
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4.0

4.1

DISCUSSION AND COMPUTATION OF RESULTS

It must be remembered that Equations (45),(46), and (47) are approximate only and are
only valid for small amplitude shock oscillations and it is recommended that they are not
used for H> a/2m. However, it is observed that all three equations show that gosc (1)

mn
vanishes for H = 0, the expected result. Eosc(t) also vanishes for H= 2\ o/m,

mn

where \ is any integer; however, this result is of little practical interest since the
equations are only valid for H< o/2m.

It is observed that Equation (47) indicates thot for a damped panei,after ¢ large time

when steady state oscillations are reached, the vibrations are composed only of vibrations
at the forcing frequency, the free or natural frequency vibrations having subsided to zero.
This is a general result for harmonically forced vibrations (see Reference 9, p. 39 et seq.).

It is observed from all three equations that there are panel resonances when a = w/2 and
when a = .

First Mode Response to Shock Oscillating About Panel Center

fD=qa/2, (m=1), for a= w; Equation (47) reduces to:

ab p w (wsinat+w
_ 0 . ,mH
Eosc(t) - 2.2 (Sm ( a ))

_cosat 0 0

Scosat)t

+
5 2 2
mn mn® Mo (UOS) + (2w) (48)
If & =0, Equation (48) reduces to (since w —»wo):
°bpo wH cos a t 2sinat+8cosat
) v g (i () ) |-
os mn 72 Mo o 5 §2 + 4
0 (49)
but if § =0
ab p
) = 0 (sin ii) _ cosat
%5Cmn mn 1t2 sz a 5
0 (50)

Figure 3 shows the dynamic magnification factor (for the first mode) plotted against the
amplitude of shock oscillation for different values of the panel damping ratio 6. The
amplification factor was obtained by dividing the maximum value of Equation (50) by
the first term of Equation (31). It should be noted that although this plot is for the first
mode dynamic magnification factor, it is also opproximately correct for the overall

20



4.2

4.3

dynamic magnification factor, because the higher mode displacements are very small
compared with that of the first mode.

First Mode Response to Shock OscillatingAbout Panel Edge

For D=0, (m=1) oand a /2=—+u, Equation (47) reduces to:

w 8sin 2a t - &oz-cosz at

ab p
0 wH w 2 w
E t) =——ag—pr [] - cos (—)] =) - -——S-sin 2at -
‘mn  mn 11’2Mt-)2 @ “o 2"“0 2 [(w 5)2 + ?.Swz]
0 (51)
but if 8 is small then w —-u, and Equation (51) becomes:
ab Po nH sin2at O&sin2at-5cos2at
E ) & ——s ['I - cos (--;-) 1- 3 - >
%hmn mn T Mo 28° + 50 (52)
but if § =0
{ 1
ab p .
(osc(f) ~ 2 > 2 [] - cos (121)] 1- SI; gﬂ f
mn mnt Me (53)

Figure 4 shows the dynamic magnification factor (for the first mode) plotted against
amplitude of shock oscillation for different values of the panel damping ratio 8. The
amplification factor was obtained by dividing the maximum value of Equation (53) by
the first term of Equation (31). Again it should be noted that although this plot is for
the first mode dynamic magnification factor, it is also approximately correct for the
overall dynamic magnification factor, because the higher mode displacements are small
compared with the first mode. :

Analysis of Results Computed by the Digital Computer Program

As discussed in Appendix D, Equation (47) was programmed for analysis by a digital
computer. Figure 5 shows two typical plots of first mode response divided by response
to the same stotic load against non-dimensionalized time for two forcing frequencies

- near to the two resonances. A representative value of damping ratio § is chosen.

Figure 6 shows a plot of the dynamic amplification factor for the first mode as a
function of shock amplitude for the shock oscillating about the panel center. The
different plots in this figure indicate how moving the forcin% frequency slightly off

the resonant frequency reduces the amplification factor; a 5/6 increase in frequency

is sufficient to reduce the dynamic magnification factor by a foctor of 10. In Figure 7,
the data of Figure 6 is replotted in the form of a typical displacement versus frequency
resonance curve.
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In Figures 8 and 9 typical plots of dynamic amplication factor against non-dimensionalized
frequency are also given for shock oscillations about a position of D/a = 0.2. The
different plots on each curve are for different shock oscillation amplitudes. The two
Figures 8 and 9 are for the first resonance (a/w = 0.5) and the second resonance

(a/w = 1.0)respectively. It is observed that the dynamic magnification factor is much
more dependent upon the shock oscillation amplitude for the first resonance than for

the second. Figures 7, 8 and 9 are all plotted for damping ratio § = 0.005. The

damping ratio for typical structures is in the range of § = 0.005 to 0.02, so this is

a realistic value of & o choose.

Figures 10 and 11 show plots of the dynamic magnification factor against mean position
of the oscillating shock (X/a) for three representative values of § and for shock fre-
quencies of 8=0.5and 1.0. In Figure 10 the dynamic magnification factor is given

for shock oscillations of amplitude (H/a = 0.1); in Figure 11 the shock oscillation ampli-
tude isH/0 = 0.5. In recent tests in the 7 inch supersonic tunnel at the Marshall Space
Flight Center, Huntsville, Alabama, shock waves have been observed to oscillate during
steady tunnel runs at @ Mach number M = 2.44, The excursions of the shock waves were
of the order of a boundary layer thickness. Scaling this oscillation to the Saturn V and
panels near to the flare would suggest that H/a =~ 0.1 is o reasonable value. Thus the
dynomic magnification factorsgiven in Figure 10 would seem to be realistic provided the
shock couples to the first resonant frequencies of the local panels.
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5.0

CONCLUSIONS

The experimental data of oscillating shock loads experienced by space vehicles which
were examined were inconclusive. There is evidence to show that shocks can
oscillate at discrete frequencies and also in a random manner. The case of a shock
oscillating ot o discrete frequency received principal attention. An approximate
analysis was formulated and some numerical evaluation of the theoretical results
undertaken. It is shown that amplification factors of up to 50 can be experienced
by a panel with a damping ratio of about 0.005; this factor decreases to 12.5 for

a damping ratio of 0.02. This factor is for the first mode for a shock oscillating

at the panel resonant frequency about the middle point of the panel with an ampli-
fude of the semi-span; this appears to be the worst case. It is suggested that for the
Saturn V o more realistic dynamic magnification factor would be between 5 and 15
(see Figure 10); this assumes a shock oscillating about the center of a typical panel
at the panel resonant frequency and ponel damping ratios of between 0.005 and
0.02.

An analysis in Appendix A gives a method of determining panel response to shocks
oscillating at constant speed. The case of shocks running down the vehicle is also
considered in this report. A much more exact solution for the case of sinussidally
oscillating shocks is given in Appendix B. In this analysis no restriction is placed
on the shock oscillation amplitude. This more refined analysis also shows that reso-
nance will occur in each mode of the panel if it is subjected to shocks oscillating
with any "sub-hamonic” (i.e.,w, ©/2, w/3, w/4,etc) of the natural domped reso-
nont frequency of the panel.

Most of the analyses in this report are restricted to simply~supported panels with
viscous damping; however, in Appendix C a method is given which shows how the
analyses can be extended to clamped-clamped panels to a good engineering
approximation.

The reader is referred to References 15, 16 and 17 for theoretical and experimental

analyses of panel response to traveling sonic boom (N - waves), explosive blast and
to step shock waves.
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RECOMMENDATIONS

It is suggested that the theoretical analysis of Appendix B, which has no restriction
placed on shock oscillation amplitude, deserves further attention and digital com-
putation. This analysis should give accurate answers for the larger shock amplitudes
and also for the panel response in its higher modes which cannot be attempted with
the approximate analysis.
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APPENDIX A

SOLUTION OF PANEL RESPONSE TO OSCILLATING SHOCKS BY THE SUMMATION
OF INTEGRALS

As is discussed in the Introduction and Section 2 of this report, the manner of oscillation
of shock waves relative to space vehicles is not at all well defined. Also, if the velocity
of oscillation of the shock becomes comparcble to that of the vehicle, the pressure down-
stream of the shock will be different when the shock moves upstream from when it moves
downstream . The analysis which follows shows how the analysis of Section 3.3 can be
developed to allow for these factors.

Simply Supported Panel Response to a Step Shock Oscillating at a Constant Speed

(o) Consider the case of a flat panel, initiclly unloaded, which is then subjected to a
pressure step p which sweeps from x = 0 to x = o and back repeatedly at constant speed v .

The panel response is divided into time regimes which encompass each sweep of the shock
front across the panel.

Then:

(A) For time 0< t< a/v §A= §]

(B) For time a/v< t< 2 a/v £B=§-]+§2+£3

(C) For time 2 a/v< t< 3 a/v EC=EI+£2+E3+§4+£5

efc.,
where gmn has been abbreviated to & , the generalized displacement co-ordinate of

h .
the mn' mode,and is given by:

t ve, b
g](f) = -/- [Po . F(XIYI O')] dx dy dU \
™M F=0 X0 =0
a/v vag b W
£ ]n(:z = / f f [po .Fx,y,0)| dx dy do } A1)
¢=0 x=0 ¥=0 | :

52(1') = f [ /[po.F(x,y,a) dx dy do

26



Y @ T e e

t a b

53 t) = [ [— Py - F (x,y,0)| dx dy do
mn o=a/v x=2a-ve y=0 i
20/v a b .
5—3 i = / [ [- P - F (x,y,o0)] dx dy do
mn o=a/v x=2a-ve¢ y=0 : A1)
a b

t
54(1’) = f / / [ - Py - F (x,y,o)] dx dy do
mn 0=2a/v x=0 ¥=0

t 2a-vo b
gs(f) = / [ Po .F(x,y,o)]dx dy do

mn

0=2a/v x=0 y=0

—U_S(‘l’—;_) . N
where F (x,7,0) = sin ™2 gip 1Y o 05 bt
ryr a b MJ

It is seen that the integrals ¢ I ), f] (t) and §2 (t) have already been evaluated in
mn mn mn

Section 3.3 of this report. Some simplification may be achieved in the later time regimes

by summing some of the integrals. For instance in time regime (C):

20/v a,. b

gz(f) + 54(f) = / / /[poF(x,y,a)]dx dy do
mn mn o=a/v x=0 y=0

However, probably the simplest way to evaluate the panel response after it has been
subjected to several crossings of the shock is to evaluate the general integral:

Tt++Ua/v Ya+Zvo b
%tz = / / [po . F (x,y,o)] dx dy do
0=Sg/& x=Wa+Xve ‘y=0 (A2)
where S, T, U, W, X, Y,and Z are integers.
This method of determining pane! response may appear to be lengthy: however, with the

use of Equation (A2) and a digital computer, it should not be impracticable. It should be
noted that this method is sufficiently flexible to allow the use of a different value of Po

and v as the shock moves up and downstream, if this refinement is required.
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(b) The panel response is also readily formulated if the shock does not oscillate completely

across the panel but about some mean position D. The integrations are now made be-

tween x = D - Hand x = D + H where 2H is the shock front excursion, instead of between

x =0 and x = a. For instance,the first three integrals of Equations (A1) above
3 (t) , £ (f) , and § (f) would now become:

m mn mn
t vo, b
5‘ t = f / / [ Py - F (x,y,o)J dx dy do \
mn 0=0 x=D =0
H/v ve. b
E_.;(f) = / f / [ Pg F (x,y,a)jl dx dy do S
mn o=0 x=D =0
t D+H b
52 ) = / f / { Po F(x,y,0) ] dx dy do
mn o=H/v x=D ¥=0 /

if the shock is assumed to start oscillating about the mean position D.

Simply - Supported Panel Response to a Sinusoidally Oscillating Step Shock

The integrals are again formulated in a similar manner to those in Equations (A1) and
(A3) above. Again the integrations are made between x =D - Hand x =D + H. The
distance vo now becomes Hsina o if a is the angular frequency of oscillation. The
time H/v now becomes w/2a if the shock front is assumed to start oscillating about a
mean position D. The first three integrals E ), E (t) , and E ) would

mn Zon
now become:
t Hsin ac b, _
‘4’] ® = / f [ Pp - F (x,y,c)] dx dy do \
mn o=0 x=D y=0" '
w/2a Hsinao b,
{] W = / [ R - F (x,y,a)] dx dy do s
mn o=0 x=D y=0 .
t H b
22 B = / f / [ Py F (x,y,a)] dx dy do )
mn 0=0 x=D 'y=0

28

(A3)

(A4)



This method proposed is alternative to that developed in Section 3.4 of the report .

For each analysis developed in this Appendix, the total displacement, strains and stresses
in the x - and y - directions,respectively,of any point on the panel may be determined
by substituting the appropriate value of the generalized displacement fmn(t) ond values

of x and y into Equations (4), (5), (6), (7), and (8) respectively.
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APPENDIX B

SOLUTION OF PANEL RESPONSE TO SINUSOIDALLY OSCILLATING SHOCKS BY
THE USE OF BESSEL FUNCTIONS

In Section 3.4 of this report, approximations for the functions cos (m:H sin @0 ) and

H sin ag ) are made using Equations (36) and (37). This allows the integration of

sin
Equation (35) to be made, although in practice it restricts the oscillating shock to small
amplitudes relative to the panel span, particularly for the case of the higher modes.

However, it is noted that the use of Bessel functions allows a series solution to be |
found for the above functions and thus a much more accurate analysis for panel response
to oscillating shocks can be formulated which is no longer restricted in the amplitude of
oscillation of the shock front.

Reference 18 gives:

M

n—-—
,-s
Ji“
¥
-
~—

n
3
o
"
3
N
S
i
N

Pr

[
|

-1
-—l\./

! (B1)

®
cos (usin z) = JO (p) +2 ; [ o (u) cos[2 k z] ]

where:

J G
2

(B2)

Jo is a Bessel Function of the First kind, zero order,

J2k is a Bessel Function of the First kind, 2kfh order,

J is a Bessel Function of the First kind, (2k+ ])rh order.

2k+1

These two identities [Equaﬁons (B1) and (BZ)] may be compared with Equations (36)
and (37). Substituting these identities into Equation (35) gives:

. 2 ab t
_ o Po muD mwD m1rH
¢ e e — cos — - (cos ~ ) J (

oscmn mn 112Mu 0

QO

)42 D oy, €2t

k=1
-« 5(?- o)

+ 2 sin o= Z [ 2+ (m1;H ))sin((2k+1) ad)]i sinw(t-0) do (B3)
(prowded n is an odd integer)

))cos(2k o) ] +

H = t .
sc 0 (if n is an even integer)

mn 0




The equation may be separated info three integrals which are evaluated separately:

I]—

I]—

I

2:

t

2abp w.5(o-t)
2 «(cos m:D)[ - J (ﬂ) ] / 0 sin w(o -t) do

2
mn ® Mow 0 (B4)

2abp -5t
0 -(cosm"D)[]-J (me)] w-e 0. ((.)OSSinuf-*-mcosuf)

2 a
mnTw Muwo (85)
4abp 2r 0 B(o-1)
0 +(cos me) f E “J2 me sm(u (o-1)) cos(2ka o) da]
mn = Muw o=0 k=1 (B6)
4abp g
0o 2225 [ o -
mn 7w Mo
k=1
vy 81'
m08 sin(Z kai)+ W - 2 ka }-cos{Zka i} e lu S sinwi + (W — 2ka ).cos i.i-‘]
- +

2 [ (u08)2 + (W - 2ka ) ]
vy 5t
8 sin(2ka t)- (W + 2ka ).cos(2ka t)+ e luOS sin wt + (W+2ka ).cos uf]] ]

w

0

+

2[(0 82 + ( + 2ka )2 #7)

4abp 5 ' 0, 8(a 1)
- ——— 6in ). f=o Z[[JZM (’“:”)] Oin w(o-1) sim((2k+1) ac)dtr]

4abp e
3‘ = 3 0 (sin lTWD) Z [J2I<+] (ﬂﬂ)] +
mnt Mo a : a

- Sf
W - (2k + 1) a)ssin((2k+1)a t)-uOS cos((2k+1).at)- e [(u =(2k+1)a)sinwt - UOS cos uf]

+
2| (u05) + (@ - (2k+1)a) ]
-w, 5t
(@ + (2k+1)a)-sin((2k+1)at)+ Woe cos((2k+1).at)+ e Oiu+(2k+l)u Jsinwt - -ug 8cosut]]
+ s
2| 0D+ + (2k+])u)2] )
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oee
(o

-w 5t -

0
2 2
(cosm:D) [l —Jo(m:H)] (g ) -e [—::—S;sin wt +(E:— ) cos uf] -
0 0 0

-w051'

2ab Po

£ e ® =

mn mnt Mo

d

® . _ ) ) i
o [J l"‘“H\] u085m2kat+(,,, 2ka) cos 2kat -e [ u055mm+(w 2ka)cos wt
) 2 : 2k " a

2 2
— («.)08) + (W - 2ka)
-wGSf
uOS sin 2kat - (W+2ka)cos 2kat +e [005 sinut + (-2ka) coswt
- +
@) + @ + 2a)”

+ t.)(sm—— ) Z [ 21 M)“

k=0 l
-0981' 4'

(w=(2k+1)a)sin(2k+1)at -008 cos (2k+)at  -e |@-(2k+1)a)sinwt -uOS cos ut,
+ —

6,87 + (o - @)’

+

&
-uot

(w+{2k+1)a)sin(2k+1)at+w_& cos(2k+1)atte [(w+(2k+’| Ja)sinwt -w.5 cosw

+ 0
(8,8) + o+ (2k+)a)

0

(89)
If damping is small, & —»0 and Equation (B9) reduces to:
 2abp
_ 0 m1rD [ _ me] _ -
s t = 575} <o 1 J (—) [l cosuol’]

mn mnTt Mo

©

cosZkuf - cosw.t
Z [ e = - ] +
¢ wy - (2ka)

k=1

@

Wy sin (2k+1)at - (2k+1)a sinw .t
+ 20 (sm-@) (me) 2
a 2k+1 a , 2 02

k=0 “ ~

(B10)
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For large time, t— o and Equation (B9) reduces to:
o 2
8 ) -

b wH 908 sin 2kat + (w - 2ka) cos 2kat
Z (uGS) + (w-2ka)

2db Po

(COsLn.l?' [| _Jo(mnH
mnw Mo a °

w 5 sin 2kat - (W + 2 ka) cos 2kat

(m08)2 + (o + 2ka)?

.____m r f L TR AVA VN L IR 3 Ut -~ 2t -
D \ii'-\“‘rl)a)sm\zkﬂ)ur-wgo cos (Zk+1)at
T )Z [J2k+l (m:uH)] 2 2 +
k=0 @8)" + (-2k+1)a)

+ w (sin

W + (2k+1)a)sin(2k+1)at + (.)05 cos (2k+1)at
+

@,8) + (o + (2k1)a)? (B11)

It is interesting to compare Equations (B9), (B10), and (B11) with (45), (46), and (47)
respectively. It is observed that the first terms of the series in Equation (B11) (when

k =1 in the first sum, and k = 0 in the second sum) bare a strong resemblance to

Equation (47). In fact, Equation (47) differs from the first terms of Equation (B11) in that

(47) the factor 2(]—J0 (Ln-%'j)) is replaced by (1 - cos mwH ),the factor 2J2 ('—n-l(:—'-') is

Q

mmH

]cmd the factor 2J.|(m:H ) is replaced by sin ida

The agreement between equation (41) and the first terms of equation (B 11) is very good
mwH
a

is replaced by -]2— [l - cos

provided

is not too large,as the following example illustrates.
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.

For — = 0.5: -

(i) 2[1 - J (’“"‘H)] =0.1231; 1-cos™H  _ 0 1224
0 a a

. mwH _ o1 mwH| _

(ii) 2J2 . ) =0.0612; 5[\ - cos — ]-0,06]2

) 2, (L".:_"i) = 0.4845; sin™H =0.4794

mnH

It may be observed that for = /2 the agreement is not nearly so good, ond the

mrH . .
is increased.

agreement becomes progressively worse as the value of

muH

It is also interesting to note that for small values of it is sufficiently accurate to

consider only the first terms of the series in Equation (B11). This is obvious from an
examination of the figure below:

1.0 o]

M)
0.8 S[\ LJod 1) L] X

\
N

£ 04

Valved of J (x)
o
N
AN
a4
)

o
<)

N
/7N

A

1 2 3 4 5 6 7 8 9 10

L~

L,

& S
N
£

Values of x

This figure shows that the second terms of the series in Equation (B11) start to become
significant as -nlgﬂ—-ow/Z. When 1:—}-! = , the largest value which needs to be
considered for the first mode (m = 1), the second terms are appreciable and in fact
J] (m) zJ3 (v). For higher modes (m>1) the higher order Bessel functions become

mH and can no longer be neglected.

appreciable rapidly for smaller values of

One other interesting observation, which can be made by examining Equation (B11), is
that not only do first mode resonances occur for excitation by a shock wave oscillating
‘at the resonant angular frequency w and the " sub-harmonic" frequency w/2
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as is shown by Equation (47) , but that they also occur for excitation by an infinite
number of "sub~harmonic" frequencies w/3, w/4, w/5 ....... etc. However, the
response in the first mode due to these higher "sub-harmonic" forcing frequencies is only
appreciable for large amplitude shock oscillations; the response in the higher modes to

the higher "sub-harmonic" frequencies becomes appreciable for much smaller amplitude
shock oscillations.
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APPENDIX C

FORMULATION OF PANEL RESPONSE THEORY FOR PANELS WITH CLAMPED-
CLAMPED EDGES

It is not possible in the case of a panel with clamped-clamped edges to write down a
mathematical expression for the mode shape which exactly satisfies all the boundary
conditions. However, a good engineering approximation is given by:

men
f k,y) = f  (x,y) =
ST
m|| n
1 [ a x a x a x a x
f (x,y) = = A cosh + B sinh + C cos + D sin
d lX X m a m a m a m a
mii ol |
a_y ay ay a y]
oJA cosh—_—+ B sinh——+ C cos + D sin
n b n b n b n b
(c.m)

where xm p Xn are the mode shapes in the x-and y-directions and le‘ , IXnI
are their maximum values respectively; and A ,B ,C ,D ,A ,8 ,C ,andD
m"  m’" m’" "m’ "n" n" "n n

are modal coefficients which are determined by the boundary conditions of the panel.
Applying the boundary conditions for a clamped-clamped panel, that is that for Xm and

9 X ax
m n
X, X = =X = =0, for x=a and y=b and for x =y =0,
n m n
ax dy
respectively.
A = -C
B = =D (C.2)
0 = Acosha + Bsinha + Ccosa + Dsina
0 = Asinha + Bcosha - Csina + Decosa

Equations (C.2) may be solved in order to obtain the frequency equation for a clamped-

clamped panel:
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]
—

cosha cosa
n

n (C.3)

cosha cosa = 1
n n

The mode shape fr (x,y) defined in equation (C.1) above is used in equation (4) and

- » 4 m“ L L4 n“ - - Ld -
wherever else required instead of sin o sinp L, if analysis is required for a

clamped-clamped panel instead of a simply supported panel. The other parameters
required are discussed below and the necessary parameters which were calculated in
Reference 15 are given in Table 1.

The natural resonant angular frequencies, which for a simply-supported panel are given
by equation (28), are given for a clamped-clamped panel by:

h V I E —
w = 7 R
m "~ 2 ¥ Y 12p(1 = +9) (C.4)
where

4 2
(b 4 4 b
Rmn —(;) "“m * % T 2(?) * ¥m ¥y (C.5)

where y ¢ § are resonant frequency parameters which are defined and evaluated in

Reference 15 and given in Table 1 below.

The generalized mass, which for a simply-supported panel is given by equation (29), is
given for a clamped ~clamped panel by:

M. = M M (phab) (C.6)
where
2 X 2
M_ = dx ; o= " dy (C.7)
n

Although the modal constants, frequency parameters and generalized mass have been
calculated for a clamped-clamped beam for the first few modes and are presented in
several references (for example the first five modes are given in Reference 19), these
parameters are required for at least the first nine or ten modes for the analysis of panel

response . Thus, these parameters were calculated in Reference 15, and are presented
. here in Table 1.
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It should be noted that the modal coefficients: C = - A , C = - A and
m m’ n n

Bm = - Dn = = 1. More significant figures are given in Table 1 above where

they are required for accurate calculations.
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LOGIC FOR THE DIGITAL COMPUTER PROGRAM

Equation (47) may be written as amplification factor A for the first mode (by dividing by
the first term of Equation (31) and puttingm = 1):

—§7 sin29 + (l-?ug)cos 27

A= —1 (cosw B)(1 - cosw A)| 1-8 _J0-89) -
2 02 2a,2
41-8) 2| =5 +0-2
1-8 .
-———8—2- sin 23'+(1+gg) cos 20 (I—S-)sini- —if- cos T
j(]—“ﬁ-s ) + 2sinwDkinwH '/(]-8 ) +
% 20,2 % o’
2—2+(]+T) 2 — + (1-=)
1-8 . 1-8 “
(1 +g) sinF  + 82 cosd 1
A Jo-8%)
82 a 2
2[——2 + (1 +=) ]
1-6 (D1)
where D=D/a, H= H/a, and v = at
Putting o/w = B and neglecting second order terms in §, since & is small gives:
A = _;_ (cost D) (1-cosw )| 1 - Ssinga +(1-25)2c0520 _ 6sin20 - (l+2B2)c052u +
§° + (1-2) 52+ (1+2)
+ 2(sin v D)(sinw H) (]-Psmc -STcosa + _g(H )Si"“+§2€°s°
8+ (1-B) 8%+ (14 8) (D2)

The computer program was written to compute Equation (D2) as time 7 varied between
0 and 2. The maximum and minimum values of A where chosen for each case under
consideration. The parameters which were varied and the values assigned are given below:



05, 0.010 and 0.020;

, 0.1, 0.2,0.3,0.4,and0.5 ;
.0,0.1,0.2,0.3,0.4,and0.5 ;

50,1.020,1.010, 1.005, 1.002,1.001, 1.000, 0.999, 0.998, 0.995, 0.990,
.980, 0.950, 0.525, 0.510, 0.505, 0.5025, 0.5010, 0.5005, 0.5000, 0.4995,
.4990, 0.4975, 0.4950, 0.4900, 0.4750.

@ IO

0.0
0.0
0.0
1.0
0.9
0

The flow chart which was used to calculate the values of maximum A for these cases
is given in Figure D1 following. Figure D2 gives the listing of the computer program
which was written.
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Read
Input Dato

Pl =3.14159265
Pl4a=2x Pl

{

Calculate
B4 *B2%

f
N
Y

J=K=1=1

— O

AT
Tl

ROaHA O

§

KK = KK +1

no
yes

Find Maximum
And Minimum
Values of AMP.

$5(2) On N2

I

Write
Headi Q

Write

All 144 Valyes of
Amplitude

Write
§, Dys H, By

ax amp, min amp

H=H+0.1

~()
Calculate
Amplitude
yes

Figure D1. Flow Chart to Solve -Computer Program




= K+1

K

yes

=J+1

J

R TR MR s I .

I =1I+1

yes

yes

)

Write
End of Run

C

(Continued)

Figure DI1.
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83
82

1

2
3

3200 FORTRAN (2.1 /7 7/

PROGRAM MALCOLM
COMMON A(144),BETA(26),DEE(6).DELTA(3),S51GMaA
P1=3.14159265
CALCULATION OF PANEL DYNAMIC AMPLIFICATION FACTORS DUE TO
SINUSOIDALLY OSCILLATING SHOCK
DATA SHOULD BE PREPARED AS FOLLOWS
13 VALUES 0F BETA,SIX PER CARD,FORMAT (6F12.6)

& VALUES OF D sS1X PER CARD,FORMAT(8F12.6)

3 VALUES OF DELTA, 3 PER CARD,FORMAT(6F12.6)

Pl4z4,«pP]

READ(60,100)(BETA(]),1=1,6)

RE‘D(6°)1°G)(BETA(!)II=711?)

READ(80,100) BETA(13)

DO 33 UKK=14,26
BETA(JKKI=BETA(JKK=-13)/2.

READCS0,400)(DEE(]),1=1,6)

READU(60,10D)(DELTAC(I),124,3)

WRITE (61,699)

WRITE (61,700) (BETA(IX),IX=1,26),(DEECIXX),IXX=1,68),(DELTACIIX),
i1Ix=1,3)

DO 190 1=1,3
DO 190 II=1,6
DO 190 111=1,26
HWiH=0,

DO 81 XK=1,6

K=4

SIGMA=(D,

XX1zCOSF(PI«DEE(II))I*(1.-COSF(P]enH))

DELT2=DELTA(])eDELTA(])

XX221 . ~(DELTA(I)I«SINF(2.+SIGMAY+(1.-2 . wBETA(II]))«COSF(2.«SIGMA))/
1(DELT2+(1.~2.#RETA(III))+e2)-{DELTAIII«SINF(2 «SIGMA)=(1,+2.«BETA(
2111))«COSF(2.*SIGMA))/(DELT2+(1,+2,.¢BETA(II]))ee?)

XX322.¢SINF(PI«DEE(II))«SINF(PIwHr)I*(((1.~BETA(IIT))*SINF(SIGMA)~
1DELTA(I)®COSF(SIGMA) ) /(DELT2+(1.-BETA(III))ew2)«((1.+BETA(II]))"
2SINF(SIGMA)+DELTA(T1)*COSF(SIGMA) )/ (DELT2+ (1. +BETA(II]))ew2))

A(K)IE(,125)%(XX1eXX2+XX3)

KsKel

IF(x,EQ0.145)82,83

SIGMA=SIGMA«P] /72,

GO TO 5

VALMAX=VALMINzA(L)

DO BS KKK=z1,144

IF(atKKK) ,GT.VALMAX)Y,2

VALMAXzA(KKK)

GO TO 85

IFCA(KKKY ,LT.VALMIN)3, 85

VALMIN=A(KKK)

85 CONTINUE

GO TO (B877,88),SSWTCHF(2)

877 IF (WH.E0..5) 87,88
87 IF (I1.EQ.1.AND.HH EQ,. 5. AND,II].EQ,1.0R,JII.E0.1L3.0R.II1.EQ.14.0R

1.111.E0.20.0R.,111.E0.26) 870,88

-870 WRITE (61,200) DELTA(I),DEE(II),WH,BETA(CILID)

WRITE(S1,300)(A(IK),IK=1,144)

88 WRITE (61,800) DELTACIY,DEE(II1),HH,BETACTII]), VALMAX,VALMIN

81
190

100
200

300
400
80

HH=HH+. 1

CONTINUE

WRITE(59,400)

FORMAT(6F12.3)

FORMAT (2X,30HVALUES OF AMPLITUDE FOR DELTAs=,E12.3,2X,2HD=,E12.3,
12X,2HH=,E12.3,2X,9HAND BETA=,E42.3)

FORMAT (12X,7E16.8)

FORMAT(2X,10HEND OF RUN)
0 FORMAT (SX.6HDELTA:;512.6,3X.ZHD=.E12.6.3X.2HH8.512-6n3Xc5HBETl=»-
1E12.6,3X,8HMAX AMP:;EIb.B‘BXJB“MIN AMP=,E16,8)

699 FORMAT (20X,10WINPUT DATA)
700 FQRMAT (2X,6F12.6)

END

Figure D2. Computer Program
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